论文标题

迈向用于螺旋振幅和Parton阵雨的量子计算算法

Towards a Quantum Computing Algorithm for Helicity Amplitudes and Parton Showers

论文作者

Bepari, Khadeejah, Malik, Sarah, Spannowsky, Michael, Williams, Simon

论文摘要

高能粒子碰撞测量值的解释在很大程度上取决于完整事件发生器的性能。迄今为止,预测多粒子最终状态运动学的时间最多的时间是计算硬过程和随后的Parton淋浴步骤。随着量子设备的持续改进,需要专门的算法来利用潜在的量子计算机可以提供的。我们提出了量子栅极计算机的一般和可扩展算法,以促进螺旋振幅和Parton淋浴过程的计算。螺旋幅度计算利用了旋转器和量子位之间的等效性以及量子计算机的独特特征,以同时计算每个粒子的螺旋性,从而充分利用计算的量子性质。通过同时计算2 $ \ rightarrow $ 2的流程,可以进一步利用比古典计算机的优势。 Parton淋浴算法模拟了共线发射,以进行两步,离散的Parton淋浴。与经典的实现相反,量子算法构建了一个波函数,并在整个Parton淋浴过程中叠加所有淋浴历史,从而消除了明确跟踪单个淋浴历史的需求。两种算法都利用了量子计算机在整个计算过程中保持量子状态的能力,并代表了迈向量子计算算法的第一步,以描述LHC上的完整碰撞事件。

The interpretation of measurements of high-energy particle collisions relies heavily on the performance of full event generators. By far the largest amount of time to predict the kinematics of multi-particle final states is dedicated to the calculation of the hard process and the subsequent parton shower step. With the continuous improvement of quantum devices, dedicated algorithms are needed to exploit the potential quantum computers can provide. We propose general and extendable algorithms for quantum gate computers to facilitate calculations of helicity amplitudes and the parton shower process. The helicity amplitude calculation exploits the equivalence between spinors and qubits and the unique features of a quantum computer to compute the helicities of each particle involved simultaneously, thus fully utilising the quantum nature of the computation. This advantage over classical computers is further exploited by the simultaneous computation of s and t-channel amplitudes for a 2$\rightarrow$2 process. The parton shower algorithm simulates collinear emission for a two-step, discrete parton shower. In contrast to classical implementations, the quantum algorithm constructs a wavefunction with a superposition of all shower histories for the whole parton shower process, thus removing the need to explicitly keep track of individual shower histories. Both algorithms utilise the quantum computer's ability to remain in a quantum state throughout the computation and represent a first step towards a quantum computing algorithm to describe the full collision event at the LHC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源