论文标题

贫瘠的高原排除学习扰乱者

Barren plateaus preclude learning scramblers

论文作者

Holmes, Zoë, Arrasmith, Andrew, Yan, Bin, Coles, Patrick J., Albrecht, Andreas, Sornborger, Andrew T.

论文摘要

使用标准技术很难调查,这些过程通过多体量子系统迅速传播纠缠,但与量子混乱和热化有关。在这封信中,我们询问是否可以使用量子机学习(QML)来调查此类过程。我们证明了与QML一起学习未知的争夺过程的无关定理,这表明任何变异的ANSATZ都有可能具有贫瘠的高原景观,即成本梯度,这些成本梯度在系统大小上呈指数级消失。这意味着即使采用了避免这种规模的策略(例如,采用了基于ANSATZ的贫瘠的高原或无需午便式定理),所需的资源规模也会成倍增加。此外,我们在数值和分析上将结果扩展到近似扰动器。因此,我们的工作在缺乏先前信息时对单位知识的可学习性构成了泛滥的限制。

Scrambling processes, which rapidly spread entanglement through many-body quantum systems, are difficult to investigate using standard techniques, but are relevant to quantum chaos and thermalization. In this Letter, we ask if quantum machine learning (QML) could be used to investigate such processes. We prove a no-go theorem for learning an unknown scrambling process with QML, showing that any variational ansatz is highly probable to have a barren plateau landscape, i.e., cost gradients that vanish exponentially in the system size. This implies that the required resources scale exponentially even when strategies to avoid such scaling (e.g., from ansatz-based barren plateaus or No-Free-Lunch theorems) are employed. Furthermore, we numerically and analytically extend our results to approximate scramblers. Hence, our work places generic limits on the learnability of unitaries when lacking prior information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源