论文标题
SORC-评估质谱图中计算分子共定位分析分析
SoRC -- Evaluation of Computational Molecular Co-Localization Analysis in Mass Spectrometry Images
论文作者
论文摘要
质谱成像(MSI)数据的计算分析旨在鉴定有趣的质量共定位及其在样品中的横向分布的可视化,通常是组织横截面。但是,随着组织的形态结构和不同种类的质量共定位自然显示出巨大的多样性,对计算方法的选择和调整是一项耗时的努力。在这项工作中,我们根据其横向分布模式中的相似性解决了计算质量通道图像的特殊问题。这样的分析是由以下想法驱动的,即具有相似分布模式的分子组可能具有功能关系。但是,相似性函数和其他参数的选择通常是通过耗时且无缺的试验和错误来完成的。我们提出了一种称为SORC(排名群集指数的总和)的新的灵活工作流程方案,以自动化此步骤并使其更有效。我们使用从实验室获得的三种不同样品(大麦种子,小鼠膀胱组织,人PXE皮肤)获取的三个不同数据集测试SORC。我们表明,可以将Sorc应用于在短时间内使用应用方法获得的结果,而不会太多努力。在我们的应用程序示例中,三个数据集的SORC结果表明,a)一些众所周知的相似性功能适合于所有三个数据集获得良好的结果,而b)对于具有更高程度的不规则性改进的MSI数据,可以通过应用非标准性相似性来实现。使用我们的方法计算的SORC分数表明,对质量通道图像分组的不同方法的自动测试和评分可以通过最终选择最高分数的方法来改善研究的最终结果。
The computational analysis of Mass Spectrometry Imaging (MSI) data aims at the identification of interesting mass co-localizations and the visualization of their lateral distribution in the sample, usually a tissue cross section. But as the morphological structure of tissues and the different kinds of mass co-localization naturally show a huge diversity, the selection and tuning of the computational method is a time-consuming effort. In this work we address the special problem of computationally grouping mass channel images according to their similarities in their lateral distribution patterns. Such an analysis is driven by the idea, that groups of molecules that feature a similar distribution pattern may have a functional relation. But the selection of the similarity function and other parameters is often done by a time-consuming and unsatsifactory trial and error. We propose a new flexible workflow scheme called SoRC (sum of ranked cluster indices) for automating this tuning step and making it much more efficient. We test SoRC using three different data sets acquired from the lab for three different kinds of samples (barley seed, mouse bladder tissue, human PXE skin). We show, that SORC can be applied to score and visualize the results obtained with the applied methods in short time without too much effort. In our application example, the SoRC results for the three data sets reveal that a) some well-known similarity functions are suited to achieve good results for all three data sets and b) for the MSI data featuring a higher degree of irregularity improved results can be achieved by applying non-standard similarity functions. The SoRC scores computed with our approach indicate that an automated testing and scoring of different methods for mass channel image grouping can improve the final outcome of a study by finally selecting the methods of the highest scores.