论文标题
变异多尺度分析和Nitsche方法的统一,以及由此产生的边界层细尺度模型
Unification of variational multiscale analysis and Nitsche's method, and a resulting boundary layer fine-scale model
论文作者
论文摘要
我们表明,在各种多尺度框架中,通过Nitsche的方法对基本边界条件的弱执行直接对应于特定的投影操作员选择。 Nitsche方法的一致性,对称性和惩罚术语均来自相应量表分解所决定的细尺度闭合。由于这种形式主义,我们能够确定Nitsche型配方中确切的细尺度贡献。在对流扩散方程式的背景下,我们开发了一个基于残差的模型,该模型在Dirichlet边界上包含了非变化的细尺度。这将带有新模型参数的附加边界项。然后,我们为所有涉及的参数提出了一个参数估计策略,该策略对于高阶基础函数也是一致的。我们通过数值实验说明,我们的新增强模型减轻了过度扩散的行为,即经典基于残余的细尺度模型在边界上显示的边界层显示具有弱执行的必要条件的边界。
We show that in the variational multiscale framework, the weak enforcement of essential boundary conditions via Nitsche's method corresponds directly to a particular choice of projection operator. The consistency, symmetry and penalty terms of Nitsche's method all originate from the fine-scale closure dictated by the corresponding scale decomposition. As a result of this formalism, we are able to determine the exact fine-scale contributions in Nitsche-type formulations. In the context of the advection-diffusion equation, we develop a residual-based model that incorporates the non-vanishing fine scales at the Dirichlet boundaries. This results in an additional boundary term with a new model parameter. We then propose a parameter estimation strategy for all parameters involved that is also consistent for higher-order basis functions. We illustrate with numerical experiments that our new augmented model mitigates the overly diffusive behavior that the classical residual-based fine-scale model exhibits in boundary layers at boundaries with weakly enforced essential conditions.