论文标题
通过使用Cherenkov望远镜阵列对SNR G0.9+0.1的Pulsar风星云的限制模型。
Constraining Models of the Pulsar Wind Nebula in SNR G0.9+0.1 via Simulation of its Detection Properties using the Cherenkov Telescope Array
论文作者
论文摘要
SNR G0.9+0.1是由超新星残留物(SNR)组成的银河系中心方向上的众所周知的来源,核心中的脉冲星(PWN)。我们研究了未来Cherenkov望远镜阵列(CTA)的潜力,模拟了SNR G0.9+0.1的观察结果。我们研究了该源的空间和光谱特性,并估计了这些测量值的系统误差。如果VHE排放区域大于$ \ sim0.65'$,则该来源将解决。还可以区分不同的光谱模型并计算截止能量。系统的错误由IRF仪器不确定性支配,尤其是在低能量下。我们使用一个区域时间依赖性的Leptonic模型计算了SNR内的年轻PWN的演变。我们将模型应用于模拟的CTA数据,发现可以准确测量$γ$ -Ray频谱的截止能量。多波长光谱的拟合将使我们还可以约束PWN的磁化。相反,纯粹的权力法频谱将排除该模型。最后,我们检查了频谱形状的影响和固有辐射场(ISRF)对PWN参数估计的影响,发现它们没有显着影响。
SNR G0.9+0.1 is a well known source in the direction of the Galactic Center composed by a Supernova Remnant (SNR) and a Pulsar Wind Nebula (PWN) in the core. We investigate the potential of the future Cherenkov Telescope Array (CTA), simulating observations of SNR G0.9+0.1. We studied the spatial and spectral properties of this source and estimated the systematic errors of these measurements. The source will be resolved if the VHE emission region is bigger than $\sim0.65'$. It will also be possible to distinguish between different spectral models and calculate the cut-off energy. The systematic errors are dominated by the IRF instrumental uncertainties, especially at low energies. We computed the evolution of a young PWN inside a SNR using a one-zone time-dependent leptonic model. We applied the model to the simulated CTA data and found that it will be possible to accurately measure the cut-off energy of the $γ$-ray spectrum. Fitting of the multiwavelength spectrum will allow us to constrain also the magnetization of the PWN. Conversely, a pure power law spectrum would rule out this model. Finally, we checked the impact of the spectral shape and the energy density of the Inter-Stellar Radiation Fields (ISRFs) on the estimate of the parameters of the PWN, finding that they are not significantly affected.