论文标题
通过均质氧化反应性识别Nife氧化氧化物氧气氧化催化剂的表面氧中间体的识别
Recognition of Surface Oxygen Intermediates on NiFe Oxyhydroxide Oxygen-evolving Catalysts by Homogeneous Oxidation Reactivity
论文作者
论文摘要
Nife氧化氧化物是可再生氢生产的最有前途的氧气进化反应(OER)催化剂之一,并解密了氧气中间体在其表面上的身份和反应性,这是一个关键挑战,但对于了解具有较高效果的OER机制以及设计较高的效率的催化催化剂至关重要。在这里,我们筛选和利用了原位反应性探针,这些探针可以选择性地靶向具有高速速率的特定氧中间体,以研究Nife氧化氧化物的OER中间体和途径。最重要的是,氧原子转移(燕麦)探针(例如4-(二苯基磷酸)苯甲酸)可以通过清除OER中间体来有效抑制OER动力学,从而表现出较低的OER电流,表现出较低的Tafel斜率,较大的Tafel Slopes和较大的动力学同位素效应,同时与其他反应率相应地效应较小的反应性。将燕麦反应性与电化学动力学和手术拉曼光谱技术相结合,我们确定了静止的fe = o Ni-O支架中的中间位置,以及限制速率的o-o化学耦合步骤,在fe = o = o部分之间的fe = o部分和较长的har骨架上,较长的化学键= o。证实实验结果。这些结果指出了解放晶格O和加快O-O耦合的新方向,以优化基于Nife的OER电催化剂。
NiFe oxyhydroxide is one of the most promising oxygen evolution reaction (OER) catalysts for renewable hydrogen production, and deciphering the identity and reactivity of the oxygen intermediates on its surface is a key challenge but is critical to understanding the OER mechanism as well as designing water-splitting catalysts with higher efficiencies. Here, we screened and utilized in situ reactive probes that can selectively target specific oxygen intermediates with high rates to investigate the OER intermediates and pathway on NiFe oxyhydroxide. Most importantly, the oxygen atom transfer (OAT) probes (e.g. 4-(Diphenylphosphino) benzoic acid) could efficiently inhibit the OER kinetics by scavenging the OER intermediates, exhibiting lower OER currents, larger Tafel slopes and larger kinetic isotope effect values, while probes with other reactivities demonstrated much smaller effects. Combining the OAT reactivity with electrochemical kinetic and operando Raman spectroscopic techniques, we identified a resting Fe=O intermediate in the Ni-O scaffold and a rate-limiting O-O chemical coupling step between a Fe=O moiety and a vicinal bridging O. DFT calculation further revealed a longer Fe=O bond formed on the surface and a large kinetic energy barrier of the O-O chemical step, corroborating the experimental results. These results point to a new direction of liberating lattice O and expediting O-O coupling for optimizing NiFe-based OER electrocatalyst.