论文标题

一致检查不确定的事件数据

Conformance Checking over Uncertain Event Data

论文作者

Pegoraro, Marco, Uysal, Merih Seran, van der Aalst, Wil M. P.

论文摘要

在公司和企业中数字化流程和运营的强烈冲动导致了信息系统中日益大量的流程数据的创建和自动记录。这些以事件日志的形式提供。过程挖掘技术可以实现以过程为中心的数据分析,包括自动发现过程模型并检查事件数据是否符合给定模型。在本文中,我们分析了不确定事件日志的先前未开发的设置。在这种情况下,日志不确定性是明确记录的,即事件的时间,活动和案例可能不清楚或不精确。在这项工作中,我们定义了不确定事件日志和模型的分类法,并研究了不确定性对过程发现和符合检查的挑战。最后,我们展示了如何通过将不确定的迹线对准常规过程模型来获得一致性的上限和下限。

The strong impulse to digitize processes and operations in companies and enterprises have resulted in the creation and automatic recording of an increasingly large amount of process data in information systems. These are made available in the form of event logs. Process mining techniques enable the process-centric analysis of data, including automatically discovering process models and checking if event data conform to a given model. In this paper, we analyze the previously unexplored setting of uncertain event logs. In such event logs uncertainty is recorded explicitly, i.e., the time, activity and case of an event may be unclear or imprecise. In this work, we define a taxonomy of uncertain event logs and models, and we examine the challenges that uncertainty poses on process discovery and conformance checking. Finally, we show how upper and lower bounds for conformance can be obtained by aligning an uncertain trace onto a regular process model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源