论文标题

定量稳定性以最大程度地减少Yamabe指标

Quantitative Stability for Minimizing Yamabe Metrics

论文作者

Engelstein, Max, Neumayer, Robin, Spolaor, Luca

论文摘要

在任何封闭的riemannian dimensian $ n \ geq 3 $的封闭式歧管上,我们证明,如果功能几乎最小化yamabe能量,则相应的同源度度量在定量意义上是接近的,以最大程度地减少同条类中的Yamabe Metric。通常,该距离由Yamabe能量不足四次控制。最后,我们产生了一个二次估计值的示例。

On any closed Riemannian manifold of dimension $n\geq 3$, we prove that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close, in a quantitative sense, to a minimizing Yamabe metric in the conformal class. Generically, this distance is controlled quadratically by the Yamabe energy deficit. Finally, we produce an example for which this quadratic estimate is false.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源