论文标题

玻色子介导的相互作用的量子扩增

Quantum amplification of boson-mediated interactions

论文作者

Burd, S. C., Srinivas, R., Knaack, H. M., Ge, W., Wilson, A. C., Wineland, D. J., Leibfried, D., Bollinger, J. J., Allcock, D. T. C., Slichter, D. H.

论文摘要

量子对象之间的强和精确控制的相互作用对于量子信息处理,仿真和传感以及外来量子物质的形成至关重要。偶联的范式良好的范式是使用弱相互互动的量子对象,是使用辅助波体量子激发来介导相互作用。重要的例子包括原子之间的光子介导的相互作用,超导量子位和钻石中的颜色中心以及被困离子之间以及光学和微波光子之间的声子介导的相互作用。玻色子介导的相互作用原则上可以通过玻色子通道的参数驱动来扩增;驱动器不需要直接将其与交互的量子对象相结合。已经针对各种量子平台提出了这项技术,但迄今为止在实验室还没有实现。在这里,我们通过实验证明了通过陷阱电势的参数调制,在两个被困的离子量子位之间进行了玻色子介导的相互作用的扩增。扩增可提供相互作用强度的3.25倍,通过测量两倍纠缠的门的加速来验证。这种扩增技术可用于任何量子平台,在任何量子平台中都有可能对玻色子通道的参数调制,从而可以探索新的参数制度和增强的量子信息处理。

Strong and precisely-controlled interactions between quantum objects are essential for quantum information processing, simulation, and sensing, and for the formation of exotic quantum matter. A well-established paradigm for coupling otherwise weakly-interacting quantum objects is to use auxiliary bosonic quantum excitations to mediate the interactions. Important examples include photon-mediated interactions between atoms, superconducting qubits, and color centers in diamond, and phonon-mediated interactions between trapped ions and between optical and microwave photons. Boson-mediated interactions can in principle be amplified through parametric driving of the boson channel; the drive need not couple directly to the interacting quantum objects. This technique has been proposed for a variety of quantum platforms, but has not to date been realized in the laboratory. Here we experimentally demonstrate the amplification of a boson-mediated interaction between two trapped-ion qubits by parametric modulation of the trapping potential. The amplification provides up to a 3.25-fold increase in the interaction strength, validated by measuring the speedup of two-qubit entangling gates. This amplification technique can be used in any quantum platform where parametric modulation of the boson channel is possible, enabling exploration of new parameter regimes and enhanced quantum information processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源