论文标题
在原子电离过程中,相对论冲动近似
Relativistic Impulse Approximation in the Atomic Ionization Process induced by Millicharged Particles
论文作者
论文摘要
Millicharged粒子已成为超出标准模型以外的物理学的有吸引力的话题。在直接检测实验中,可以从原子电离过程中限制毫米颗粒的参数空间。在这项工作中,我们开发了相对论脉冲近似(RIA)方法,在毫米型粒子引起的原子离子化过程中,可以有效地与原子多体效应对决。得出了由millicharged颗粒诱导的原子电离中RIA的制定,并获得了数值计算,并将其与游离电子近似和等效光子近似的原子电离。具体而言,在这项工作中仔细研究了由高纯苗聚(HPGE)(HPGE)(HPGE)和液体氙(LXE)探测器中的Mllicharged暗物质颗粒和Millichared Neutminos诱导的原子离子。估计并计算出对暗物质粒子和中微子Millicharge的敏感性的差分横截面,反应事件发生率,并在下一代HPGE和基于LXE的实验中检测敏感性,并计算出以进行全面的研究。我们的结果表明,与直接检测实验中当前的最佳实验边界相比,下一代实验将在暗物质粒子$Δ_χ$上提高2-3个数量级。此外,与当前的实验边界相比,中微子millicharge $Δ_ν$在中微子millicharge $Δ_ν$上的下一代实验也将提高2-3倍。
The millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, we develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles. The formulation of RIA in the atomic ionization induced by millicharged particles is derived, and the numerical calculations are obtained and compared with those from free electron approximation and equivalent photon approximation. Concretely, the atomic ionizations induced by mllicharged dark matter particles and millicharged neutrinos in high-purity germanium (HPGe) and liquid xenon (LXe) detectors are carefully studied in this work. The differential cross sections, reaction event rates in HPGe and LXe detectors, and detecting sensitivities on dark matter particle and neutrino millicharge in next-generation HPGe and LXe based experiments are estimated and calculated to give a comprehensive study. Our results suggested that the next-generation experiments would improve 2-3 orders of magnitude on dark matter particle millicharge $δ_χ$ than the current best experimental bounds in direct detection experiments. Furthermore, the next-generation experiments would also improve 2-3 times on neutrino millicharge $δ_ν$ than the current experimental bounds.