论文标题

减少除数的加权乘数理想

Weighted multiplier ideals of reduced divisors

论文作者

Olano, Sebastian

论文摘要

我们使用来自Birational几何形状的方法来研究沿高表面的定位上的Hodge和重量过滤。我们专注于由重量过滤产生的子模型的霍奇过滤的最低部分。这导致了一系列理想的滑轮,称为加权乘数理想。该序列的最后一个理想是乘数理想(也是杂物理想),我们证明第一个是伴随的理想。我们还研究了加权乘数理想的局部和全球性质及其在光滑品种超曲面的奇异性上的应用。

We use methods from birational geometry to study the Hodge and weight filtrations on the localization along a hypersurface. We focus on the lowest piece of the Hodge filtration of the submodules arising from the weight filtration. This leads to a sequence of ideal sheaves called weighted multiplier ideals. The last ideal of this sequence is a multiplier ideal (and a Hodge ideal), and we prove that the first is the adjoint ideal. We also study the local and global properties of weighted multiplier ideals and their applications to singularities of hypersurfaces of smooth varieties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源