论文标题
抛物线式准变量不平等(i) - 半主持酮操作员方法
Parabolic Quasi-Variational Inequalities (I) -- Semimonotone Operator Approach
论文作者
论文摘要
在未知的依赖凸组上制定的变异不平等称为准定期不平等(QVI)。本文涉及基于抛物线抛物性变异不平等的紧凑定理,在许多生化/机械问题中产生的一类抛物线QVI的抽象方法(参见[9])。我们用于抛物线类型QVI的模型的原型是在反射性Banach空间中提出的,作为在未知凸约束和半主持酮操作员下的时间衍生操作员的总和,包括选择凸约限制的反馈系统。这项工作的主要目的是指定一类未知国家依赖的凸约限制,并提供QVI的精确表述。
Variational inequalities, formulated on unknown dependent convex sets, are called quasi-variational inequalities (QVI). This paper is concerned with the abstract approach to a class of parabolic QVIs arising in many biochemical/mechanical problems, based on a compactness theorem for parabolic variational inequalities (cf. [9]). The prototype of our model for QVIs of parabolic type is formulated in a reflexive Banach space as the sum of the time-derivative operator under unknown convex constraints and a semimonotone operator, including a feedback system which selects a convex constraint. The main objective of this work is to specify a class of unknown-state dependent convex constraints and to give a precise formulation of QVIs.