论文标题

评估风力预测的合奏后处理

Evaluating Ensemble Post-Processing for Wind Power Forecasts

论文作者

Phipps, Kaleb, Lerch, Sebastian, Andersson, Maria, Mikut, Ralf, Hagenmeyer, Veit, Ludwig, Nicole

论文摘要

捕获概率风力预测的不确定性是具有挑战性的,尤其是当不确定的输入变量(例如天气)发挥作用时。由于合奏天气预测旨在捕获天气系统中的不确定性,因此它们可用于将这种不确定性传播到随后的风能预测模型。但是,由于已知天气合奏系统是偏见和分散的,气象学家后期制作的合奏。这种后处理可以成功纠正天气变量中的偏见,但尚未在随后的预测(例如风力发电预测)的背景下进行彻底评估。本文评估了多种策略,用于将集合后处理应用于概率风能预测。我们将合奏模型输出统计(EMOS)用作后处理方法,并评估了四种可能的策略:仅使用原始合奏而无需进行后处理,这是一种单步策略,只有天气合奏是后处理的,这是一种单步策略,我们只能在Power Powersembles和Power Powerembles,以及我们的两步策略,以及我们的两步策略,我们的两者都可以进行天气以及Ensemblesemblesemblesembles。结果表明,后处理最终的风能合奏会提高有关校准和清晰度的预测性能,同时仅在后处理天气集合并不一定会导致预测性能提高。

Capturing the uncertainty in probabilistic wind power forecasts is challenging, especially when uncertain input variables, such as the weather, play a role. Since ensemble weather predictions aim to capture the uncertainty in the weather system, they can be used to propagate this uncertainty through to subsequent wind power forecasting models. However, as weather ensemble systems are known to be biased and underdispersed, meteorologists post-process the ensembles. This post-processing can successfully correct the biases in the weather variables but has not been evaluated thoroughly in the context of subsequent forecasts, such as wind power generation forecasts. The present paper evaluates multiple strategies for applying ensemble post-processing to probabilistic wind power forecasts. We use Ensemble Model Output Statistics (EMOS) as the post-processing method and evaluate four possible strategies: only using the raw ensembles without post-processing, a one-step strategy where only the weather ensembles are post-processed, a one-step strategy where we only post-process the power ensembles, and a two-step strategy where we post-process both the weather and power ensembles. Results show that post-processing the final wind power ensemble improves forecast performance regarding both calibration and sharpness, whilst only post-processing the weather ensembles does not necessarily lead to increased forecast performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源