论文标题

Ramanujan扩展的收敛性,我[Ramanujan云上的多重性]

Convergence of Ramanujan expansions, I [Multiplicativity on Ramanujan clouds]

论文作者

Coppola, Giovanni, Ghidelli, Luca

论文摘要

我们称$ r_g(a):= \ sum_ {q = 1}^{\ infty} g(q)c_q(a)$ of系数$ g:$ n $ \ to $ c的'ramanujan系列',其中$ c_q(a)$是众所周知的ramanujan sum。 We study the convergence of this series (a preliminary step, to study Ramanujan expansions and define $G$ a 'Ramanujan coefficient' when $R_G(a)$ converges pointwise, in all natural $a$. Then, $R_G:$N$\to$C is well defined ('w-d'). The 'Ramanujan cloud' of a fixed $F:$N$\to$C is美元 我们的第一个主要结果,即$ g $乘法的“有限收敛定理”,以及其他属性等于“ $ r_g $定义良好”,将收敛测试降低到有限的集合,即$ r_g $ w-w-d等于:$ r_g(a)$ r_g(a)$ revenges $ r_g(a)$ a $ a $ a $ a $ n $ n(g)callue n cam nevient y ram(g) 我们的第二个主要结果是“有限的Euler产品显式公式”,用于乘法Ramanujan系数$ G $,将$ f = r_g $作为有限的Euler产品写;因此,$ f $是半杂质功能(后面定义),该产品是$ f $的Selberg分解。特别是,我们有:$ f(a)= r_g(a)$绝对收敛,是有限的(长度取决于$ a $的非零$ p-$ adic估计)。 我们的第三个主要结果称为“乘法Ramanujan云”,研究了$ <f> _m $的重要子集;同样,对于所有乘法$ f $,<f> _m $中的$ g_f \ $ g_f \ in <f> _m $,证明:任何乘法$ f $都具有有限的Ramanujan扩展,并具有多重系数。

We call $R_G(a):=\sum_{q=1}^{\infty}G(q)c_q(a)$ the 'Ramanujan series', of coefficient $G:$N$\to$C, where $c_q(a)$ is the well-known Ramanujan sum. We study the convergence of this series (a preliminary step, to study Ramanujan expansions and define $G$ a 'Ramanujan coefficient' when $R_G(a)$ converges pointwise, in all natural $a$. Then, $R_G:$N$\to$C is well defined ('w-d'). The 'Ramanujan cloud' of a fixed $F:$N$\to$C is $<F>:=${$G:N\to C|R_G \; w-d, F=R_G$}. (See the Appendix.) We study in detail the multiplicative Ramanujan coefficients $G$ : their $<F>$ subset is called the 'multiplicative Ramanujan cloud', $<F>_M$. Our first main result, the "Finiteness convergence Theorem", for $G$ multiplicative, among other properties equivalent to "$R_G$ well defined", reduces the convergence test to a finite set, i.e., $R_G$ w-d is equivalent to: $R_G(a)$ converges for all $a$ dividing $N(G)\in$N, that we call the "Ramanujan conductor". Our second main result, the "Finite Euler product explicit formula", for multiplicative Ramanujan coefficients $G$, writes $F=R_G$ as a finite Euler product; thus, $F$ is a semi-multiplicative function (following Rearick definition) and this product is the Selberg factorization for $F$. In particular, we have: $F(a)=R_G(a)$ converges absolutely, being finite (of length depending on non-zero $p-$adic valuations of $a$). Our third main result, called the "Multiplicative Ramanujan clouds", studies the important subsets of $<F>_M$; also giving, for all multiplicative $F$, the 'canonical Ramanujan coefficient' $G_F\in <F>_M$, proving: Any multiplicative $F$ has a finite Ramanujan expansion with multiplicative coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源