论文标题

d维度的分析弹跳

Analytic bounces in d dimensions

论文作者

Amariti, Antonio

论文摘要

我们研究了具有各种潜力的标量场理论的欧几里得弹跳动作在错误和真实真空之间插值。我们专注于三角形,正方形和二次屏障的情况,在四个维度上已经对弹跳动作进行了分析。我们将结果推广到d维度,在每种情况下提供一个分析公式。此外,我们表明,当真真空和虚真空的能量接近时,我们的结果减少了从薄壁近似计算得出的结果。当无法在有限量的欧几里得时间以有限数量的欧几里得时间达到真正的真空时,我们通过分析延续到洛伦兹时空来研究溶液的阻尼振荡。

We study the Euclidean bounce action interpolating between a false and a true vacuum for a scalar field theory with various types of potential. We focus on the cases of a triangular, a square and a quadratic barrier, where the bounce action has already been computed analytically in four dimensions. We generalize the result to d dimensions, providing an analytic formula in each case. Furthermore we show that our results reduce to the ones computed from the thin wall approximation, when the true and the false vacuum are close in energy. When the true vacuum cannot be reached in a finite amount of Euclidean time we study the damped oscillations of the solution by analytical continuation to Lorentzian spacetime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源