论文标题
系列$ \ displaystyle {\ sum_ {n = 1}^{\ infty} \ frac {1} {n} {n} {n} \ sin \ frac {x} {n}} $
Arithmetic and Analysis of the series $\displaystyle { \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{x}{n} }$
论文作者
论文摘要
在本文中,我们将尼曼的著名定理与beurling联系在$ l^2(0,1)$中的Riemann假设与某些功能空间的密度与Hardy和Littlewood首先考虑的三角系列之间。我们强调了其一些奇怪的分析和算术特性。
In this paper we connect a celebrated theorem of Nyman and Beurling on the equivalence between the Riemann hypothesis and the density of some functional space in $ L^2(0, 1)$ to a trigonometric series considered first by Hardy and Littlewood. We highlight some of its curious analytical and arithmetical properties.