论文标题
双模式径向脉动脉冲sx腓尼基的地震分析
Seismic analysis of the double-mode radial pulsator SX Phoenicis
论文作者
论文摘要
我们介绍了原型星SX腓尼基的复杂地震分析的结果。该分析包括两个径向模式频率的同时拟合,即降压通量振幅的相应值(参数$ f $)和固有模式振幅$ \ varepsilon $。检查了各种参数以及不透明度数据的效果。在每个不透明度表的情况下,可以找到地震模型,这些模型可以通过适用于有效温度和发光度的观测值的进化模型允许的质量重现两个观察到的频率。所有地震模型都处于后序序列阶段。蛋白石和OP地震模型处于氢壳阶段,Oplib地震模型刚刚完成了总体收缩,并开始在壳中燃烧氢。对于人口II星而言,OP和OPLIB模型的可能性较小,因为要求高初始氢丰度($ x_0 = 0.75)$,而过高的金属性($ z \ of 0.004 $)的可能性较小。参数$ f $的拟合,其经验值源自多色光度观测值,对恒星外层和大气中的微型库动速度的对流传输效率有限制。我们对每个不透明度数据的复杂地震分析表明,在恒星的包膜中表明对流较低至中等有效的对流,这是由$α_ {\ rm Mlt} \ in(0.0,〜0.7)$的混合长度参数描述的
We present the results of complex seismic analysis of the prototype star SX Phoenicis. This analysis consists of a simultaneous fitting of the two radial-mode frequencies, the corresponding values of the bolometric flux amplitude (the parameter $f$) and of the intrinsic mode amplitude $\varepsilon$. The effects of various parameters as well as the opacity data are examined. With each opacity table it is possible to find seismic models that reproduce the two observed frequencies with masses allowed by evolutionary models appropriate for the observed values of the effective temperature and luminosity. All seismic models are in the post-main sequence phase. The OPAL and OP seismic models are in hydrogen shell-burning phase and the OPLIB seismic model has just finished an overall contraction and starts to burn hydrogen in a shell. The OP and OPLIB models are less likely due to the requirement of high initial hydrogen abundance ($X_0=0.75)$ and too high metallicity ($Z\approx 0.004$) as for a Population II star. The fitting of the parameter $f$, whose empirical values are derived from multi-colour photometric observations, provides constraints on the efficiency of convective transport in the outer layers of the star and on the microturbulent velocity in the atmosphere. Our complex seismic analysis with each opacity data indicates low to moderately efficient convection in the star's envelope, described by the mixing length parameter of $α_{\rm MLT}\in (0.0,~0.7)$, and the microturbulent velocity in the atmosphere of about $ξ_{\rm t}\in(4,~8)~\kms$.