论文标题
中间的符号字符和移动的双楼梯形状的平面隔板
Intermediate symplectic characters and shifted plane partitions of shifted double staircase shape
论文作者
论文摘要
我们使用中间符号字符来提供霍普金斯猜想的证明和变化,现在由霍普金斯和莱证明,在带有有界条目的移位双楼梯形状的移动平面分区的数量上。实际上,我们证明了一些涉及中间符号字符的字符身份,并为此类移动的平面分区找到生成功能。证明的关键要素是中间符号字符的双端公式,它们在Schur函数和符号符号字符之间进行了插值,以及Ishikawa-Wakayama Minor-Summummation Formula。
We use intermediate symplectic characters to give a proof and variations of Hopkins' conjecture, now proved by Hopkins and Lai, on the number of shifted plane partitions of shifted double staircase shape with bounded entries. In fact, we prove some character identities involving intermediate symplectic characters, and find generating functions for such shifted plane partitions. The key ingredients of the proof are a bialternant formula for intermediate symplectic characters, which interpolates between those for Schur functions and symplectic characters, and the Ishikawa-Wakayama minor-summation formula.