论文标题

非径向解决方案的外部散射到能量亚临界波动方程

Exterior scattering of non-radial solutions to energy subcritical wave equations

论文作者

Shen, Ruipeng

论文摘要

我们考虑了defocusing,doctial_t^2 u-ΔU= - | | | |^{p -1} u $ in dimension $ d \ in \ in \ {3,4,5 \} $,并证明解决方案的外部散布$ 3 \ leq d \ leq d \ leq 5 $和$ 1+6/d <p <p p <,更确切地说,如果有有限能量的任何解决方案,则存在解决方案$ u_l $对均匀的线性波方程,以便以下限制成立 \ [ \ lim_ {t \ rightarrow +\ infty} \ int_ {| x |> t +t +t +t +r} | \ nabla_ {x,x,t} u(x,x,x,t) - \ nabla_ {x,x,t} u_l(x,t} u_l(x,x,x,x,x,x,x,x,x,t)|^2 dx = 0 \ \ \] 对于任何固定的实际数字$ r $。在径向情况下,这概括了先前已知的外部散射。

We consider the defocusing, energy subcritical wave equation $\partial_t^2 u - Δu = -|u|^{p-1} u$ in dimension $d \in \{3,4,5\}$ and prove the exterior scattering of solutions if $3\leq d \leq 5$ and $1+6/d<p<1+4/(d-2)$. More precisely, given any solution with a finite energy, there exists a solution $u_L$ to the homogeneous linear wave equation, so that the following limit holds \[ \lim_{t\rightarrow +\infty} \int_{|x|>t+R} |\nabla_{x,t} u(x,t)- \nabla_{x,t} u_L(x,t)|^2 dx = 0 \] for any fixed real number $R$. This generalize the previously known exterior scattering result in the radial case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源