论文标题

关于泊松过程的平滑更改点位置估计

On Smooth Change-Point Location Estimation for Poisson Processes

论文作者

Amiri, A., Dachian, S

论文摘要

我们有兴趣估计我们所谓的“平滑更改点”的位置,从$ n $独立观察到不均匀的泊松过程。平滑的更改点是该过程的强度函数从一个级别到另一个级别的过渡,但在如此小的间隔内,其长度$Δ\ _n $被认为降至$ 0 $,为$ n \ to $ n \ to+\ \ infty $。我们表明,如果$δ\ _n $比$ 1/n $慢,我们的型号在本地渐近(具有相当不寻常的速率$ \ sqrt {δ\ _n/n} $),并且最大的可能性和贝叶斯估计值是一致的,异常正常的,并且在正常情况下是正常和异常的。相反,如果$δ\ _n $的零超过$ 1/n $,则我们的模型是非规范的,并且行为就像更改点模型。更确切地说,在这种情况下,我们表明贝叶斯估计器是一致的,以$ 1/n $的价格收敛,具有非高斯极限分布,并且渐近效率。所有这些结果都是使用Ibragimov和Khasminskii的似然比分析方法获得的,这些方法同样产生了所考虑估计量的多项式矩的收敛性。但是,为了研究$δ\ _n $的最大似然估计器的最大估计量超过$ 1/n $,则无法使用功能空间中的融合拓扑来应用此方法。因此,这项研究应该使用替代拓扑,并将在以后的工作中考虑。

We are interested in estimating the location of what we call "smooth change-point" from $n$ independent observations of an inhomogeneous Poisson process. The smooth change-point is a transition of the intensity function of the process from one level to another which happens smoothly, but over such a small interval, that its length $δ\_n$ is considered to be decreasing to $0$ as $n\to+\infty$. We show that if $δ\_n$ goes to zero slower than $1/n$, our model is locally asymptotically normal (with a rather unusual rate $\sqrt{δ\_n/n}$), and the maximum likelihood and Bayesian estimators are consistent, asymptotically normal and asymptotically efficient. If, on the contrary, $δ\_n$ goes to zero faster than $1/n$, our model is non-regular and behaves like a change-point model. More precisely, in this case we show that the Bayesian estimators are consistent, converge at rate $1/n$, have non-Gaussian limit distributions and are asymptotically efficient. All these results are obtained using the likelihood ratio analysis method of Ibragimov and Khasminskii, which equally yields the convergence of polynomial moments of the considered estimators. However, in order to study the maximum likelihood estimator in the case where $δ\_n$ goes to zero faster than $1/n$, this method cannot be applied using the usual topologies of convergence in functional spaces. So, this study should go through the use of an alternative topology and will be considered in a future work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源