论文标题
开放式DICKE模型的平均场方程的精确性,并应用于模式检索动力学
Exactness of mean-field equations for open Dicke models with an application to pattern retrieval dynamics
论文作者
论文摘要
开放量子dicke模型是范式的系统,用于调查未平衡的量子设置中的光 - 物质相互作用。尽管在结构上很简单,但这些模型可以显示出有趣的物理学。但是,获得其动力学行为的确切结果是具有挑战性的,因为它需要解决多体量子系统的解决方案,并具有几种相互作用的连续和离散的自由度。在这里,我们通过证明开放多模型模型的平均场半古典方程的有效性来向前迈出一步,据我们所知,到目前为止,尚未得到严格的建立。我们利用这一结果表明,开放的量子多模型Dicke模型可以作为联想记忆行为,从而表现出向模式识别阶段的非平衡相变。
Open quantum Dicke models are paradigmatic systems for the investigation of light-matter interaction in out-of-equilibrium quantum settings. Albeit being structurally simple, these models can show intriguing physics. However, obtaining exact results on their dynamical behavior is challenging, since it requires the solution of a many-body quantum system, with several interacting continuous and discrete degrees of freedom. Here, we make a step forward in this direction by proving the validity of the mean-field semi-classical equations for open multimode Dicke models, which, to the best of our knowledge, so far has not been rigorously established. We exploit this result to show that open quantum multimode Dicke models can behave as associative memories, displaying a nonequilibrium phase transition towards a pattern-recognition phase.