论文标题
可见的基于光通信的车辆定位,以避免碰撞和排
Visible Light Communication based Vehicle Localization for Collision Avoidance and Platooning
论文作者
论文摘要
避免碰撞和排成应用需要以CM级准确性和至少50 Hz的速率进行全体自治的速率定位。当前用于车辆定位的雷达/雷达和基于摄像头的方法不满足这些要求,因此需要补充技术。可见光定位(VLP)是一种高度合适的互补技术,由于其高精度和高速率,从LED/尾灯/尾灯中利用了可见光通信(VLC)信号的视线传播特征。但是,现有的车辆VLP算法施加了限制性要求,例如,使用高带宽电路,路边灯和某些VLC调制策略,并且用于有限的相对车辆方向,因此对于一般使用是不可行的。本文提出了一种基于VLC的车辆定位方法,该方法通过新颖的VLC接收器设计和相关的车辆VLP算法消除了这些限制性要求。 VLC接收器(称为QRX)是低成本/尺寸,可以通过使用象限光电二极管的使用,同时使用高速VLC和高速度的VLC和高准确性的到达角度(AOA)测量。 VLP算法通过使用来自两个QRX的AOA测量进行定位,估计了相邻车辆上两个头部/尾灯VLC发射器(TX)的位置。理论上通过得出定位准确性的CRAMER-RAO下限来分析该算法,并在逼真的排量和避免碰撞的情况下评估模拟定位性能。结果表明,在逼真的苛刻的道路和通道条件下,该提出的方法以CM级的精度执行,在10 m范围内的250 Hz速率执行,这表明其有资格避免碰撞和安全的排。
Collision avoidance and platooning applications require vehicle localization at cm-level accuracy and at least 50 Hz rate for full autonomy. The RADAR/LIDAR and camera based methods currently used for vehicle localization do not satisfy these requirements, necessitating complementary technologies. Visible light positioning (VLP) is a highly suitable complementary technology due to its high accuracy and high rate, exploiting the line-of-sight propagation feature of the visible light communication (VLC) signals from LED head/tail lights. However, existing vehicular VLP algorithms impose restrictive requirements, e.g., use of high-bandwidth circuits, road-side lights and certain VLC modulation strategies, and work for limited relative vehicle orientations, thus, are not feasible for general use. This paper proposes a VLC-based vehicle localization method that eliminates these restrictive requirements by a novel VLC receiver design and associated vehicular VLP algorithm. The VLC receiver, named QRX, is low-cost/size, and enables high-rate VLC and high-accuracy angle-of-arrival (AoA) measurement, simultaneously, via the usage of a quadrant photodiode. The VLP algorithm estimates the positions of two head/tail light VLC transmitters (TX) on a neighbouring vehicle by using AoA measurements from two QRXs for localization. The algorithm is theoretically analyzed by deriving its Cramer-Rao lower bound on positioning accuracy, and simulated localization performance is evaluated under realistic platooning and collision avoidance scenarios. Results demonstrate that the proposed method performs at cm-level accuracy and up to 250 Hz rate within a 10 m range under realistic harsh road and channel conditions, demonstrating its eligibility for collision avoidance and safe platooning.