论文标题

仿生基团的翻转动作和gelfand对

Flip actions and Gelfand pairs for affine Weyl groups

论文作者

Adin, Ron M., Hegedüs, Pál, Roichman, Yuval

论文摘要

比较了三角形,树,单词和置换的类型$ \ widetilde {c} _ {n} $类型的杂物weyl组的几种组合动作。在解决大卫·沃根(David Vogan)的问题时,我们表明,这些置换表示形式是自然的,这些置换表示不含多重性。证明使用类型$ \ widetilde {c} _ {n} $和$ \ widetilde {b} _n $的类型的offine Weyl组中Gelfand子组的一般结构。

Several combinatorial actions of the affine Weyl group of type $\widetilde{C}_{n}$ on triangulations, trees, words and permutations are compared. Addressing a question of David Vogan, we show that, modulo a natural involution, these permutation representations are multiplicity-free. The proof uses a general construction of Gelfand subgroups in the affine Weyl groups of types $\widetilde{C}_{n}$ and $\widetilde{B}_n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源