论文标题

自动调整静态分析以自定义使用方案

Automatically Tailoring Static Analysis to Custom Usage Scenarios

论文作者

Mansur, Muhammad Numair, Mariano, Benjamin, Christakis, Maria, Navas, Jorge A., Wüstholz, Valentin

论文摘要

近年来,静态分析仪的发展和工业采用取得了重大进展。这样的分析仪通常会提供控制分析精度和性能的大量可配置选项。在软件开发生命周期中集成静态分析仪的主要障碍是将其选项调整为自定义用法方案,例如特定的代码库或某些资源约束。在本文中,我们提出了一种技术,该技术会自动针对正在分析的代码和任何给定的资源约束来自动量身定制静态分析仪,特别是抽象的解释器。我们在一个名为Tailor的框架中实现了这一技术,我们用来对现实世界的基准进行广泛的评估。我们的实验表明,裁缝生成的配置比默认分析选项要好得多,这取决于所分析的代码,并且大多数仍针对几个后续代码版本量身定制。

In recent years, there has been significant progress in the development and industrial adoption of static analyzers. Such analyzers typically provide a large, if not huge, number of configurable options controlling the precision and performance of the analysis. A major hurdle in integrating static analyzers in the software-development life cycle is tuning their options to custom usage scenarios, such as a particular code base or certain resource constraints. In this paper, we propose a technique that automatically tailors a static analyzer, specifically an abstract interpreter, to the code under analysis and any given resource constraints. We implement this technique in a framework called TAILOR, which we use to perform an extensive evaluation on real-world benchmarks. Our experiments show that the configurations generated by TAILOR are vastly better than the default analysis options, vary significantly depending on the code under analysis, and most remain tailored to several subsequent code versions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源