论文标题
$ \ mathscr {a} $ - Quasiconvexity和部分规律性
$\mathscr{A}$-Quasiconvexity and Partial Regularity
论文作者
论文摘要
我们为强烈$ \ mathscr {a} $ - Quasiconvex积分的本地最小值建立了第一个部分规律性结果,在差分运算符$ \ mathscr {a} $具有椭圆的潜在$ \ mathbbbb {a} $的情况下。作为主要成分,该证明是通过减少到完整梯度功能的部分规律性来起作用的。在本文中专门针对特定的微分运算符,因此在无微量的对称梯度,外部导数或Div-curl-oserator的情况下,同样产生了新型的部分规则定理。
We establish the first partial regularity result for local minima of strongly $\mathscr{A}$-quasiconvex integrals in the case where the differential operator $\mathscr{A}$ possesses an elliptic potential $\mathbb{A}$. As the main ingredient, the proof works by reduction to the partial regularity for full gradient functionals. Specialising to particular differential operators, the results in this paper thereby equally yield novel partial regularity theorems in the cases of the trace-free symmetric gradient, the exterior derivative or the div-curl-operator.