论文标题

随机域中的时间谐波固体相互作用问题的形状演算方法

A Shape calculus approach for time harmonic solid-fluid interaction problem in stochastic domains

论文作者

Mukherjee, Debopriya, Tran, Thanh

论文摘要

本文介绍了与随机扰动边界的谐波制度中的内部固体相互作用问题。提供了对矢量和张量值功能的形状衍生物和形状Hessian的分析。随机溶液的矩由形状衍生物和形状的Hessian近似,并且在边界扰动的大小方面,近似值是三阶精度。我们的理论结果得到了正方形域上的分析示例的支持。

The present paper deals with the interior solid-fluid interaction problem in harmonic regime with randomly perturbed boundaries. Analysis of the shape derivative and shape Hessian of vector- and tensor-valued functions is provided. Moments of the random solutions are approximated by those of the shape derivative and shape Hessian, and the approximations are of third order accuracy in terms of the size of the boundary perturbation. Our theoretical results are supported by an analytical example on a square domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源