论文标题
贝叶斯对密集物质的推断EOS封装了一阶强体 - 夸克相过渡,可从规范中子星的观察结果
Bayesian inference of dense matter EOS encapsulating a first-order hadron-quark phase transition from observables of canonical neutron stars
论文作者
论文摘要
[目的:]我们推断出九个参数的后验概率分布函数(PDF)和相关性,这些参数表征了密集中子富含物质的EOS,这些eos封装了从Ligo/Virgo,Nicer,Nicer和Chandra协作的规范NSS的半径数据中封装了一阶强夸克相变。我们还推断出1.4 m $ _ {\ odot} $ ns中的夸克物质(QM)质量分数及其半径,并在更大的NSS中预测其值。 [方法:]元模型用于在贝叶斯统计框架内的马尔可夫链蒙特卡洛采样过程中同时生成Hadronic和QM EOSS。 NSS中$β$ equilibrium中$npeμ$ Matter的明确依赖于同胞的参数EOS通过Maxwell Construction连接到Alford,Han和Prakash的恒定速度(CSS)模型所描述的QM EOS。 [结果:](1)强体夸克过渡密度$ρ_t/ρ_0$的最可能值,而相对能量密度在那里跳跃$ \ de \ ep/\ ep_t $是$ρ_t/ρ_0= 1.6^{+1.6^{+1.2} {+1.2} $ \ de \ ep/\ ep_t = 0.4^{+0.20} _ { - 0.15} $分别在68 \%置信度下。 QM分数在1.4 m $ _ {\ odot} $ ns中的相应概率分布在10 km球体中的峰值约为0.9。与$ρ_T$和$ \ de \ ep/\ ep_t $的PDFS密切相关,声音平方的QM速度的PDF $ \ cqmsq/c^2 $峰值为$ 0.95^{+0.05} _ {+0.05} _ {-0.35} $,以及比1/3的总比例很小。 (2)HADRONIC和QM EOS参数的PDF之间的相关性非常弱。 [结论:]即使在规范的NS中,也更喜欢形成大量QM的理论和陆地核实验的所有已知EOS约束。
[Purpose:] We infer the posterior probability distribution functions (PDFs) and correlations of nine parameters characterizing the EOS of dense neutron-rich matter encapsulating a first-order hadron-quark phase transition from the radius data of canonical NSs reported by LIGO/VIRGO, NICER and Chandra Collaborations. We also infer the quark matter (QM) mass fraction and its radius in a 1.4 M$_{\odot}$ NS and predict their values in more massive NSs. [Method:] Meta-modelings are used to generate both hadronic and QM EOSs in the Markov-Chain Monte Carlo sampling process within the Bayesian statistical framework. An explicitly isospin-dependent parametric EOS for the $npeμ$ matter in NSs at $β$ equilibrium is connected through the Maxwell construction to the QM EOS described by the constant speed of sound (CSS) model of Alford, Han and Prakash. [Results:] (1) The most probable values of the hadron-quark transition density $ρ_t/ρ_0$ and the relative energy density jump there $\De\ep/\ep_t$ are $ρ_t/ρ_0=1.6^{+1.2}_{-0.4}$ and $\De\ep/\ep_t=0.4^{+0.20}_{-0.15}$ at 68\% confidence level, respectively. The corresponding probability distribution of QM fraction in a 1.4 M$_{\odot}$ NS peaks around 0.9 in a 10 km sphere. Strongly correlated to the PDFs of $ρ_t$ and $\De\ep/\ep_t$, the PDF of the QM speed of sound squared $\cQMsq/c^2$ peaks at $0.95^{+0.05}_{-0.35}$, and the total probability of being less than 1/3 is very small. (2) The correlations between PDFs of hadronic and QM EOS parameters are very weak. [Conclusions:] The available astrophysical data considered together with all known EOS constraints from theories and terrestrial nuclear experiments prefer the formation of a large volume of QM even in canonical NSs.