论文标题
具有完全共轭全条件分布的异质数据的一般贝叶斯模型
A General Bayesian Model for Heteroskedastic Data with Fully Conjugate Full-Conditional Distributions
论文作者
论文摘要
异性数据的模型与从财务时间序列到环境统计数据的各种应用相关。但是,有条件地对方差函数进行建模的主题并没有像对平均值建模一样多。波动率模型已用于特定的应用中,但是由于后验分布,这些模型可能很难在贝叶斯环境中适应,这些分布在有效地进行样品而挑战。在这项工作中,我们介绍了一个用于异性数据的通用模型。该方法将混合模型方法中的条件差异模拟是任何所需的协变量或随机效应的函数。我们依靠新的分布理论来构建可以产生完全偶联的完整条件分布的先验。因此,我们的方法很容易通过吉布斯采样拟合。此外,我们将模型扩展到一种深度学习方法,该方法可以为时间依赖数据提供高度准确的估计。我们还为重尾数据提供了扩展。我们通过三个应用程序说明了我们的方法。第一个应用程序利用具有固有空间依赖性的高维土壤数据集。第二个应用涉及对资产波动的建模。第三个应用集中在肌酐的临床试验数据上。
Models for heteroskedastic data are relevant in a wide variety of applications ranging from financial time series to environmental statistics. However, the topic of modeling the variance function conditionally has not seen near as much attention as modeling the mean. Volatility models have been used in specific applications, but these models can be difficult to fit in a Bayesian setting due to posterior distributions that are challenging to sample from efficiently. In this work, we introduce a general model for heteroskedastic data. This approach models the conditional variance in a mixed model approach as a function of any desired covariates or random effects. We rely on new distribution theory in order to construct priors that yield fully conjugate full conditional distributions. Thus, our approach can easily be fit via Gibbs sampling. Furthermore, we extend the model to a deep learning approach that can provide highly accurate estimates for time dependent data. We also provide an extension for heavy-tailed data. We illustrate our methodology via three applications. The first application utilizes a high dimensional soil dataset with inherent spatial dependence. The second application involves modeling of asset volatility. The third application focuses on clinical trial data for creatinine.