论文标题
暗物质直接检测的有效现场理论,并进行集体激发
Effective Field Theory of Dark Matter Direct Detection With Collective Excitations
论文作者
论文摘要
我们开发了一个框架,用于通过单声子和磁子激发通过一般有效操作员来计算光线直接检测率。我们的工作概括了以前的计算,这些计算集中在涉及总核和电子数量$ n $(刺激声子的通常途径)和自旋依赖性相互作用的相互作用上,涉及涉及总电子旋转$ s $(通常是兴奋的木量的通常途径)的自旋相互作用,导致我们确定涉及Orbital Angulit Momenta $ l $ l $ libit $ litime $ libit的新响应。所有四种类型的响应都可以激发声子,而与Electron的$ S $和$ L $的耦合也可以激发镁质。我们将有效的现场理论方法应用于一组良好动机的相对论基准模型,包括(伪)标量介导的相互作用,以及暗物质通过多极矩相互作用的模型,例如深色电偶极子,磁性偶极或anapole矩。我们发现,与点状自由度$ n $和$ s $的耦合通常主导着暗物质检测率,这意味着具有轨道$ l $ order或大型旋转轨道耦合的奇异材料$ l \ otimes s $是没有必要的,即与一类广泛的DM型号具有强大的范围。我们强调,在活动R&D中基于声子的晶体实验(例如香料)将探测远远超出具有简单自旋与无自旋相互作用的模型,包括例如具有偶极子和Anapole相互作用的模型。最后,我们将公开提供的代码为Phonodark,该代码使用有效的现场理论框架计算各种材料的单声子生产率。
We develop a framework for computing light dark matter direct detection rates through single phonon and magnon excitations via general effective operators. Our work generalizes previous calculations focused on spin-independent interactions involving the total nucleon and electron numbers $N$ (the usual route to excite phonons) and spin-dependent interactions involving the total electron spin $S$ (the usual route to excite magnons), leading us to identify new responses involving the orbital angular momenta $L$, as well as spin-orbit couplings $L\otimes S$ in the target. All four types of responses can excite phonons, while couplings to electron's $S$ and $L$ can also excite magnons. We apply the effective field theory approach to a set of well-motivated relativistic benchmark models, including (pseudo-)scalar mediated interactions, and models where dark matter interacts via a multipole moment, such as a dark electric dipole, magnetic dipole or anapole moment. We find that couplings to point-like degrees of freedom $N$ and $S$ often dominate dark matter detection rates, implying that exotic materials with orbital $L$ order or large spin-orbit couplings $L\otimes S$ are not necessary to have strong reach to a broad class of DM models. We highlight that phonon based crystal experiments in active R&D (such as SPICE) will probe light dark matter models well beyond those having a simple spin-independent interaction, including e.g. models with dipole and anapole interactions. Lastly, we make publicly available a code, PhonoDark, which computes single phonon production rates in a wide variety of materials with the effective field theory framework.