论文标题
扭曲的双层石墨烯IV。确切的绝缘体基态和相图
Twisted Bilayer Graphene IV. Exact Insulator Ground States and Phase Diagram
论文作者
论文摘要
我们得出了预计的魔角扭曲双层石墨烯(TBG)平坦带有库仑相互作用的魔法扭曲双层石墨烯(TBG)的确切绝缘体接地状态,并在各个范围内进行了库仑相互作用,并研究了从这些限制的扰动。我们定义了(第一个)手性极限,其中AA堆叠跳跃为零,并且具有固定频带的平坦极限。在手性 - 流动限制中,TBG哈密顿量具有u(4)$ \ times $ u(4)对称性,我们发现,相对于电荷中立性相对的整数填充$ -4 \ le的确切基础状态是$ -4 \ le v le 4 $是Chern nives $ nect $ nect $ c = 4- |,退化。这证实了最近发现Chern绝缘子是TBG竞争性低能状态的实验。当将手性 - 流动限制降低为具有U(4)对称性的非手动流动限制时,我们发现$ν= 0,\ pm2 $具有CHERN编号$ 0 $的确切基础状态,而$ν= \ pm1,\ pm3 $具有扰动的地面状态,具有Chern Number $ nmum Number $ nmume $ν_c= f pm1 $ pm1 $,us1 $ u(4)。在具有不同的u(4)对称性的手性 - 非flat限制中,不同的Chern数量状态是退化为二阶扰动的。在现实的非手壳非链虫案例中,我们发现具有Chern号$ν_c= 0 $($ 0 <|ν_c| <4- | n | $)的扰动绝缘体状态($ 0 <|ν_c| <4- | n | $)完全(部分)(部分)为InterceTalley Coohrent,而Chern number and velley $ | n velley coohrent and international interceart。但是,对于$ 0 <|ν_C| \ le4- |ν| $,完全间隔相干状态具有高度竞争力(高0.005mev/electron)。 At nonzero magnetic field $|B|>0$, a first-order phase transition for $ν=\pm1,\pm2$ from Chern number $ν_C=\text{sgn}(νB)(2-|ν|)$ to $ν_C=\text{sgn}(νB)(4-|ν|)$ is expected, which agrees with recent experimental observations.最后,在稳定器代码限制中,TBG哈密顿量将其减少为扩展的哈伯德模型。
We derive the exact insulator ground states of the projected Hamiltonian of magic-angle twisted bilayer graphene (TBG) flat bands with Coulomb interactions in various limits, and study the perturbations away from these limits. We define the (first) chiral limit where the AA stacking hopping is zero, and a flat limit with exactly flat bands. In the chiral-flat limit, the TBG Hamiltonian has a U(4)$\times$U(4) symmetry, and we find that the exact ground states at integer filling $-4\le ν\le 4$ relative to charge neutrality are Chern insulators of Chern numbers $ν_C=4-|ν|,2-|ν|,\cdots,|ν|-4$, all of which are degenerate. This confirms recent experiments where Chern insulators are found to be competitive low-energy states of TBG. When the chiral-flat limit is reduced to the nonchiral-flat limit which has a U(4) symmetry, we find $ν=0,\pm2$ has exact ground states of Chern number $0$, while $ν=\pm1,\pm3$ has perturbative ground states of Chern number $ν_C=\pm1$, which are U(4) ferromagnetic. In the chiral-nonflat limit with a different U(4) symmetry, different Chern number states are degenerate up to second order perturbations. In the realistic nonchiral-nonflat case, we find that the perturbative insulator states with Chern number $ν_C=0$ ($0<|ν_C|<4-|ν|$) at integer fillings $ν$ are fully (partially) intervalley coherent, while the insulator states with Chern number $|ν_C|=4-|ν|$ are valley polarized. However, for $0<|ν_C|\le4-|ν|$, the fully intervalley coherent states are highly competitive (0.005meV/electron higher). At nonzero magnetic field $|B|>0$, a first-order phase transition for $ν=\pm1,\pm2$ from Chern number $ν_C=\text{sgn}(νB)(2-|ν|)$ to $ν_C=\text{sgn}(νB)(4-|ν|)$ is expected, which agrees with recent experimental observations. Lastly, the TBG Hamiltonian reduces into an extended Hubbard model in the stabilizer code limit.