论文标题

具有系数的同源填充功能

Homological Filling Functions with Coefficients

论文作者

Li, Xingzhe, Manin, Fedor

论文摘要

用无调的表面填充在Cayley图中填充环路有多困难?在“无限群体的渐近不变”中对格罗莫夫的评论后,我们定义了$ r $ $ r $系数的组的同源填充功能。我们的主要定理是系数有所不同。也就是说,对于每$ n \ geq 1 $和每对系数组$ a,b \ in \ {\ mathbb {z}},\ sathbb {q} \} \ cup \} \ cup \ {\ mathbb {z}/p {z}/p \ mathb {z} $ n $ cycles含有$ a $和$ b $的系数具有不同的渐近行为。

How hard is it to fill a loop in a Cayley graph with an unoriented surface? Following a comment of Gromov in "Asymptotic invariants of infinite groups", we define homological filling functions of groups with coefficients in a group $R$. Our main theorem is that the coefficients make a difference. That is, for every $n \geq 1$ and every pair of coefficient groups $A, B \in \{\mathbb{Z},\mathbb{Q}\} \cup \{\mathbb{Z}/p\mathbb{Z} : p\text{ prime}\}$, there is a group whose filling functions for $n$-cycles with coefficients in $A$ and $B$ have different asymptotic behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源