论文标题

带有无限循环结组的嵌入式表面

Embedded surfaces with infinite cyclic knot group

论文作者

Conway, Anthony, Powell, Mark

论文摘要

我们研究本地平坦,紧凑,定向的表面,其外观具有无限的环状基本组。我们给出了两个这样的表面的代数拓扑标准,具有相同的属$ g $,与环境同构相关,并进一步的标准暗示它们是同位素的环境。在此过程中,我们证明了一对拓扑$ 4 $ - 具有无限循环基本组,同质形态边界和同等等效的交叉形式的座谈。

We study locally flat, compact, oriented surfaces in $4$-manifolds whose exteriors have infinite cyclic fundamental group. We give algebraic topological criteria for two such surfaces, with the same genus $g$, to be related by an ambient homeomorphism, and further criteria that imply they are ambiently isotopic. Along the way, we prove that certain pairs of topological $4$-manifolds with infinite cyclic fundamental group, homeomorphic boundaries, and equivalent equivariant intersection forms, are homeomorphic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源