论文标题

关于紧凑性和$ l^p $ -RECRUMATITY在$ \ edline {\ partial} $ -Neumann问题

On compactness and $L^p$-regularity in the $\overline{\partial}$-Neumann problem

论文作者

Sahutoglu, Sonmez, Zeytuncu, Yunus E.

论文摘要

令$ω$为$ c^4 $ -smooth边界pseudoconvex域中的$ \ mathbb {c}^2 $。我们表明,如果$ \叠加{\ partial} $ - neumann operator $ n_1 $在$ l^2 _ {(0,1)}(ω)$上紧凑,则嵌入式操作符$ \ Mathcal {j} l^2 _ {(0,1)}(ω)$是$ l^p $ - $ 2 \ leq p <\ infty $。

Let $Ω$ be a $C^4$-smooth bounded pseudoconvex domain in $\mathbb{C}^2$. We show that if the $\overline{\partial}$-Neumann operator $N_1$ is compact on $L^2_{(0,1)}(Ω)$ then the embedding operator $\mathcal{J}:Dom(\overline{\partial})\cap Dom(\overline{\partial}^*) \to L^2_{(0,1)}(Ω)$ is $L^p$-regular for all $2\leq p<\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源