论文标题

使用NEOS II的卷积神经网络对快速中子背景的脉冲形状歧视

Pulse Shape Discrimination of Fast Neutron Background using Convolutional Neural Network for NEOS II

论文作者

NEOS II Collaboration, Jeong, Y., Han, B. Y., Jeon, E. J., Jo, H. S., Kim, D. K., Kim, J. Y., Kim, J. G., Kim, Y. D., Ko, Y. J., Lee, H. M., Lee, M. H., Lee, J., Moon, C. S., Oh, Y. M., Park, H. K., Park, K. S., Seo, S. H., Siyeon, K., Sun, G. M., Yoon, Y. S., Yu, I.

论文摘要

脉冲形状歧视通过去除快速中子来改善NEOS分析中的信噪比在改善信噪比中起关键作用。通过查看波形的尾部来识别颗粒是脉冲形状歧视的有效且合理的方法,但在对低能量颗粒进行分类方面有限制。作为一个很好的选择,卷积神经网络可以识别脉冲特征并执行NEOS数据的形状分类,可以扫描整个波形。该网络为所有能量范围提供了强大的识别工具,并有助于搜索低能量(或更少)中微子的前所未有的现象。

Pulse shape discrimination plays a key role in improving the signal-to-background ratio in NEOS analysis by removing fast neutrons. Identifying particles by looking at the tail of the waveform has been an effective and plausible approach for pulse shape discrimination, but has the limitation in sorting low energy particles. As a good alternative, the convolutional neural network can scan the entire waveform as they are to recognize the characteristics of the pulse and perform shape classification of NEOS data. This network provides a powerful identification tool for all energy ranges and helps to search unprecedented phenomena of low-energy, a few MeV or less, neutrinos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源