论文标题
通过深度学习启用拉曼光谱的高通量分子成像
High-throughput molecular imaging via deep learning enabled Raman spectroscopy
论文作者
论文摘要
拉曼光谱法实现了没有前所未有的分子对比的无损,无标签成像,但受到缓慢的数据采集的限制,在很大程度上可以防止高通量成像应用。在这里,我们提出了一个综合框架,用于通过启用深度学习的拉曼光谱法,被称为更深层次,在大型高光谱拉曼图像数据集上进行了训练,总共有超过150万个光谱(400小时的审查)。首先,我们通过深度学习对低信噪比拉曼分子特征进行降解和重建,比最新的拉曼过滤方法的平均平方误差有9倍。接下来,我们开发了一个神经网络,用于可保留分子细胞信息的高光谱拉曼图像的2-4x超分辨率。结合这些方法,我们达到了高达160倍的拉曼成像的速度,可以在不到一分钟的时间内高分辨率,高信噪比蜂窝成像。最后,将传递学习用于从细胞扩展到组织尺度成像。更深层次提供了一个基础,该基础将使生物医学上的大量高通量拉曼光谱和分子成像应用。
Raman spectroscopy enables non-destructive, label-free imaging with unprecedented molecular contrast but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep learning enabled Raman spectroscopy, termed DeepeR, trained on a large dataset of hyperspectral Raman images, with over 1.5 million spectra (400 hours of acquisition) in total. We firstly perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 9x improvement in mean squared error over state-of-the-art Raman filtering methods. Next, we develop a neural network for robust 2-4x super-resolution of hyperspectral Raman images that preserves molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 160x, enabling high resolution, high signal-to-noise ratio cellular imaging in under one minute. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.