论文标题
众所周知的$ f(t,t_g)$和$ f(t,b)$型号的广义重力男性生成
Generalized Gravitational Baryogenesis of Well-Known $f(T,T_G)$ and $f(T,B)$ Models
论文作者
论文摘要
重生生成提出了描述早期宇宙史上物质抗逆境的不对称性的理论机制。在这项工作中,我们研究了$ f(t,t_g)$($ t $和$ t_g $的框架中的引力重生现象,分别分别等同于高斯 - 基因网术语)和$ f(t,b)$(其中$ b $表示$ b $表示torsion scalar and riccicicicicicicicicicicicicicicicicicicicicicicicicicicicicicici corcicicicicicici corcicici corcicicici corcicici scalar scalar pravatient。对于$ f(t,t_g)$ - 重力,我们考虑了两种通用的电源法律模型,而对数和一般的泰勒扩展模型,用于$ f(t,b)$ - 重力。我们考虑到每个模型的功率定律量表因子,并假设宇宙被完美的流体和深色能量填充来计算重子与熵比。我们发现与$ \partial_μf(t+t_g)$和$ \partial_μf(t+b)$相比,这两种重力理论成正比。我们将结果与重子与熵比的当前天体物理数据进行了比较,这表明与观察界的一致性(即$ \ frac {η_b} {s} = 9.42 \ times 10^{ - 11} $)。
The baryogenesis presents the theoretical mechanism that describes the matter-antimatter asymmetry in the history of early universe. In this work, we investigate the gravitational baryogenesis phenomena in the frameworks of $f(T, T_G)$ (where $T$ and $T_G$ are the torsion scalar and teleparallel equivalent to the Gauss-Bonnet term respectively) and $f(T, B)$ (where $B$ denotes the boundary term between torsion and Ricci scalar) gravities. For $f(T,T_G)$-gravity, we consider two generic power law models while logarithmic and general Taylor expansion models for $f(T,B)$-gravity. We consider power law scale factor for each model and compute baryon to entropy ratio by assuming that the universe filled by perfect fluid and dark energy. We find generalized baryogenesis interaction which is proportional to $\partial_μf(T+T_G)$ and $\partial_μf(T+B)$ for both theories of gravity. We compare our results against current astrophysical data of baryon to entropy ratio, which indicates excellent consistency with observational bounds (i.e., $\frac{η_B}{S} = 9.42 \times 10^{-11}$).