论文标题
非偏simimple不变式和Habiro的系列
Non-semisimple invariants and Habiro's series
论文作者
论文摘要
在本文中,我们建立了Habiro的彩色琼斯多项式(以Unity的第三根)和Akutsu-Deguchi-Ohtsuki(ADO)不变的不变性的颜色琼斯(评估)之间的明确关系。这使我们能够比较Witten-Reshetikhin-Turaev(WRT)和Costantino-Geer-Patureau(CGP)的不变式的3个manifolds,通过0次手术在这些结上获得。它们之间的差异取决于Habiro系列的P-1系数。我们希望所有Seifert属1节都能固定。
In this paper we establish an explicit relationship between Habiro's cyclotomic expansion of the colored Jones polynomial (evaluated at a p-th root of unity) and the Akutsu-Deguchi-Ohtsuki (ADO) invariants of the double twist knots. This allows us to compare the Witten-Reshetikhin-Turaev (WRT) and Costantino-Geer-Patureau (CGP) invariants of 3-manifolds obtained by 0-surgery on these knots. The difference between them is determined by the p-1 coefficient of the Habiro series. We expect these to hold for all Seifert genus 1 knots.