论文标题

在阿贝里安(Abelian

On abelian $2$-ramification torsion modules of quadratic fields

论文作者

Li, Jianing, Ouyang, Yi, Xu, Yue

论文摘要

对于一个数字字段$ f $和质量$ p $,$ \ mathbb {z} _p $ - torsion模块是Galois组的最大Abelian pro- $ p $ p $ $ f $ f $ p $ p $ p $ f $ to $ f $ the $ f $的扩展,表示为$ \ nathcal {t} _p(f)$ p(f)$ p p $ p p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $。在本文中,我们研究了组$ \ Mathcal {t} _2(f)= \ MATHCAL {T} _2(m)$ fimratic Field $ f = \ Mathbb {q}(\ sqrt {m})$。首先,假设$ M> 0 $,我们证明了一个明确的$ 4 $ -Lank公式,用于$ \ MATHCAL {T} _2(-m)$。此外,应用此公式,我们获得了$ 4 $ -LANK密度的$ \ MATHCAL {T} _2 $ - 假想二次字段的群体。其次,对于$ l $ a奇数,我们获得了$ \ nathcal {t} _2(\ pm l)$和$ \ Mathcal {t} _2(\ pm 2l)$的$ 2 $ - 可见性的结果。特别是我们发现,$ \#\ MATHCAL {t} _2(l)\ equiv 2 \#\#\ Mathcal {t} _2(2l)\ equiv h_2(-2l)\ bmod {16} $ {16} $ IF $ l \ equiv 7 \ equass 7 \ bmod 7 \ bmod {8} $ \ mathbb {q}(\ sqrt {-2L})$。然后,我们获得$ \ Mathcal {t} _2(\ pm L)$和$ \ Mathcal {t} _2(\ pm 2l)$的密度结果。最后,根据我们的密度结果和数值数据,我们提出分布猜测,当$ f $在任何prime $ p $的真实或想象中的二次范围内变化时,大约是$ \ nathcal {t} _p(f)$,而大约$ \ $ \ natcal {t} _2(\ pm l)$ and $ \ niie $ p pm l)科恩·伦斯特拉(Cohen-Lenstra)启发式方法的精神。我们在$ \ Mathcal {t} _2(l)$ case中的猜想密切连接到Shanks-Sime-Washington关于零2美元的零零$ l $ unctions和基本单位的分布的零分布的猜测。

For a number field $F$ and a prime number $p$, the $\mathbb{Z}_p$-torsion module of the Galois group of the maximal abelian pro-$p$ extension of $F$ unramified outside $p$ over $F$, denoted as $\mathcal{T}_p(F)$, is an important subject in abelian $p$-ramification theory. In this paper we study the group $\mathcal{T}_2(F)=\mathcal{T}_2(m)$ of the quadratic field $F=\mathbb{Q}(\sqrt{ m})$. Firstly, assuming $m>0$, we prove an explicit $4$-rank formula for $\mathcal{T}_2(-m)$. Furthermore, applying this formula, we obtain the $4$-rank density of $\mathcal{T}_2$-groups of imaginary quadratic fields. Secondly, for $l$ an odd prime, we obtain results about the $2$-divisibility of orders of $\mathcal{T}_2(\pm l)$ and $\mathcal{T}_2(\pm 2l)$. In particular we find that $\#\mathcal{T}_2(l)\equiv 2\# \mathcal{T}_2(2l)\equiv h_2(-2l)\bmod{16}$ if $l\equiv 7\bmod{8}$ where $h_2(-2l)$ is the $2$-class number of $\mathbb{Q}(\sqrt{-2l})$. We then obtain density results for $\mathcal{T}_2(\pm l)$ and $\mathcal{T}_2(\pm 2l)$. Finally, based on our density results and numerical data, we propose distribution conjectures about $\mathcal{T}_p(F)$ when $F$ varies over real or imaginary quadratic fields for any prime $p$, and about $\mathcal{T}_2(\pm l)$ and $\mathcal{T}_2(\pm 2 l)$ when $l$ varies, in the spirit of Cohen-Lenstra heuristics. Our conjecture in the $\mathcal{T}_2(l)$ case is closely connected to Shanks-Sime-Washington's speculation on the distributions of the zeros of $2$-adic $L$-functions and to the distributions of the fundamental units.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源