论文标题
强大的MIMO雷达波形过滤器设计,用于在多径的存在下进行扩展目标检测
Robust MIMO Radar Waveform-Filter Design for Extended Target Detection in the Presence of Multipath
论文作者
论文摘要
多路径的存在带来了目标的额外“外观”。本文认为,从波形过滤器设计的视图中,在存在多径的情况下,在狭窄的频带多输入多输出(MIMO)雷达中考虑了扩展目标检测问题。目的是最大化接收器的最坏情况下的信噪比 - 脉冲 - 噪声比(SINR)与目标和多径反射系数的不确定性。此外,施加了恒定模量约束(CMC),以满足雷达的实际需求。考虑两种类型的不确定性集。一个是球形不确定性集。在这种情况下,Max-min波形滤波器设计问题属于非凸凹极触发问题,并且内部最小化问题基于Lagrange二元性,将其最小化问题转换为最大化问题。然后,使用半明确松弛(SDR)和随机化方案优化最佳波形。因此,我们称为优化算法二元性最大化半明确放松(DMSDR)。此外,我们进一步研究了属于非convex非concave minimax问题的环形不确定性集的情况。为了解决它,SDR用于与凸问题近似内部最小化问题,然后基于Lagrange二元性将内部最小化问题重新构成为最大化问题。我们诉诸于两个SDR问题之间交替的顺序优化过程,以优化传输波形和接收滤波器的协方差矩阵,因此我们称算法二元性最大化双重化双重半决赛(DMDSDR)。理论上证明了DMDSDR的融合。最后,数值结果突出了所提出的算法以及优化的波形过滤器对的有效性和竞争力。
The existence of multipath brings extra "looks" of targets. This paper considers the extended target detection problem with a narrow band Multiple-Input Multiple-Output(MIMO) radar in the presence of multipath from the view of waveform-filter design. The goal is to maximize the worst-case Signal-to-Interference-pulse-Noise Ratio(SINR) at the receiver against the uncertainties of the target and multipath reflection coefficients. Moreover, a Constant Modulus Constraint(CMC) is imposed on the transmit waveform to meet the actual demands of radar. Two types of uncertainty sets are taken into consideration. One is the spherical uncertainty set. In this case, the max-min waveform-filter design problem belongs to the non-convex concave minimax problems, and the inner minimization problem is converted to a maximization problem based on Lagrange duality with the strong duality property. Then the optimal waveform is optimized with Semi-Definite Relaxation(SDR) and randomization schemes. Therefore, we call the optimization algorithm Duality Maximization Semi-Definite Relaxation(DMSDR). Additionally, we further study the case of annular uncertainty set which belongs to non-convex non-concave minimax problems. In order to address it, the SDR is utilized to approximate the inner minimization problem with a convex problem, then the inner minimization problem is reformulated as a maximization problem based on Lagrange duality. We resort to a sequential optimization procedure alternating between two SDR problems to optimize the covariance matrix of transmit waveform and receive filter, so we call the algorithm Duality Maximization Double Semi-Definite Relaxation(DMDSDR). The convergences of DMDSDR are proved theoretically. Finally, numerical results highlight the effectiveness and competitiveness of the proposed algorithms as well as the optimized waveform-filter pair.