论文标题

通过多阶段培训,知识感知的程序文本理解

Knowledge-Aware Procedural Text Understanding with Multi-Stage Training

论文作者

Zhang, Zhihan, Geng, Xiubo, Qin, Tao, Wu, Yunfang, Jiang, Daxin

论文摘要

程序文本描述了在逐步自然过程(例如,光合作用)过程中动态状态变化。在这项工作中,我们专注于程序文本理解的任务,该任务旨在在过程中理解此类文档并跟踪实体的状态和位置。尽管最近的方法取得了长足的进步,但它们的结果远远远远落后于人类绩效。有两个挑战,即常识性推理和数据不足的难度仍然未解决,需要纳入外部知识库。以前关于外部知识注入的工作通常依赖于嘈杂的网络挖掘工具和启发式规则,适用的方案有限。在本文中,我们提出了一种新颖的知识感知程序文本理解(Koala)模型,该模型有效地利用了本任务中多种形式的外部知识。具体来说,我们从概念网络中检索了信息性的知识三元,并在跟踪实体时执行知识的推理。此外,我们采用了多阶段训练模式,该模式将BERT模型微调与从Wikipedia收集的未标记数据相比,然后在最终模型上进行了细微调。对两个程序文本数据集(Propara和配方)的实验结果验证了所提出的方法的有效性,在该方法中,与各种基线相比,我们的模型可以实现最新的性能。

Procedural text describes dynamic state changes during a step-by-step natural process (e.g., photosynthesis). In this work, we focus on the task of procedural text understanding, which aims to comprehend such documents and track entities' states and locations during a process. Although recent approaches have achieved substantial progress, their results are far behind human performance. Two challenges, the difficulty of commonsense reasoning and data insufficiency, still remain unsolved, which require the incorporation of external knowledge bases. Previous works on external knowledge injection usually rely on noisy web mining tools and heuristic rules with limited applicable scenarios. In this paper, we propose a novel KnOwledge-Aware proceduraL text understAnding (KOALA) model, which effectively leverages multiple forms of external knowledge in this task. Specifically, we retrieve informative knowledge triples from ConceptNet and perform knowledge-aware reasoning while tracking the entities. Besides, we employ a multi-stage training schema which fine-tunes the BERT model over unlabeled data collected from Wikipedia before further fine-tuning it on the final model. Experimental results on two procedural text datasets, ProPara and Recipes, verify the effectiveness of the proposed methods, in which our model achieves state-of-the-art performance in comparison to various baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源