论文标题
STR:使用共享转换式策略对添加期股票的安全计算
STR: Secure Computation on Additive Shares Using the Share-Transform-Reveal Strategy
论文作者
论文摘要
云计算的快速发展可能使我们每个人受益。但是,不信任的云服务器带来的隐私风险引起了越来越多的人和立法机关的关注。在过去的二十年中,许多工作试图将各种特定任务外包,同时确保私人数据的安全性。要外包的任务是无数的;但是,所涉及的计算相似。在本文中,我们构建了一系列新颖的协议,这些方案支持在任意$ n \ geq 2 $服务器中对数字(例如基本基本函数)和矩阵(例如,特征向量和特征值的计算)的矩阵(例如,特征向量和特征值的计算)的安全计算。所有协议都只需要恒定的交互作用并达到低计算复杂性。此外,提议的$ n $ - 政党协议可以确保私人数据的安全性,即使$ n-1 $服务器相连。卷积神经网络模型被用作案例研究来验证协议。理论分析和实验结果证明了拟议方案的正确性,效率和安全性。
The rapid development of cloud computing has probably benefited each of us. However, the privacy risks brought by untrustworthy cloud servers arise the attention of more and more people and legislatures. In the last two decades, plenty of works seek to outsource various specific tasks while ensuring the security of private data. The tasks to be outsourced are countless; however, the computations involved are similar. In this paper, we construct a series of novel protocols that support the secure computation of various functions on numbers (e.g., the basic elementary functions) and matrices (e.g., the calculation of eigenvectors and eigenvalues) in arbitrary $n\geq 2$ servers. All protocols only require constant rounds of interactions and achieve the low computation complexity. Moreover, the proposed $n$-party protocols ensure the security of private data even though $n-1$ servers collude. The convolutional neural network models are utilized as the case studies to verify the protocols. The theoretical analysis and experimental results demonstrate the correctness, efficiency, and security of the proposed protocols.