论文标题

随机分配模型中的顺序贝叶斯激励兼容性

Ordinal Bayesian incentive compatibility in random assignment model

论文作者

Dasgupta, Sulagna, Mishra, Debasis

论文摘要

我们探讨了在随机分配模型中削弱了从策略 - 贝叶斯激励兼容性(OBIC)的激励兼容性概念的后果。如果代理的共同先验是统一的先验,则相对于此先验,大量的随机机制是OBIC的 - 这包括概率的串行机制。然后,我们引入了强大的OBIC版本:如果在给定独立先验的某些社区中,所有独立先验的所有独立先验的尊重,则一种机制是局部强大的OBIC。我们表明,满足温和特性的每种本地强大的OBIC机制,称为基本单调性是防策略的。这导致了Bogomolnaia and Moulin(2001)的不可能增强:如果至少有四种代理,则没有局部强大的OBIC和正常有效的机制来满足平等平等的均等处理。

We explore the consequences of weakening the notion of incentive compatibility from strategy-proofness to ordinal Bayesian incentive compatibility (OBIC) in the random assignment model. If the common prior of the agents is a uniform prior, then a large class of random mechanisms are OBIC with respect to this prior -- this includes the probabilistic serial mechanism. We then introduce a robust version of OBIC: a mechanism is locally robust OBIC if it is OBIC with respect all independent priors in some neighborhood of a given independent prior. We show that every locally robust OBIC mechanism satisfying a mild property called elementary monotonicity is strategy-proof. This leads to a strengthening of the impossibility result in Bogomolnaia and Moulin (2001): if there are at least four agents, there is no locally robust OBIC and ordinally efficient mechanism satisfying equal treatment of equals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源