论文标题

使用学习机器推断全球动力学

Inferring Global Dynamics Using a Learning Machine

论文作者

Zhao, Hong

论文摘要

给定系统的时间序列的一部分,在特定的一组参数值下,一个人可以在其参数空间中渗透系统的全局行为吗?在这里,我们表明,通过使用学习机器,我们可以在一定程度上实现这样的目标。据发现,遵循单调降低成本函数的适当训练策略,不同训练阶段的学习机可以模仿不同参数集的系统。因此,随后通常以简单的复合顺序显示系统的全局动力学属性。基本机制归因于训练策略,这导致学习机崩溃到时间序列背后的系统的定性同等系统。因此,学习机开发了一种新颖的方式来探测黑盒系统的全局动力学特性,而无需人为地建立运动方程。给定的说明示例包括低维非线性动力学系统的代表性模型和反应扩散系统的时空模型。

Given a segment of time series of a system at a particular set of parameter values, can one infers the global behavior of the system in its parameter space? Here we show that by using a learning machine we can achieve such a goal to a certain extent. It is found that following an appropriate training strategy that monotonously decreases the cost function, the learning machine in different training stage can mimic the system at different parameter set. Consequently, the global dynamical properties of the system is subsequently revealed, usually in the simple-to-complex order. The underlying mechanism is attributed to the training strategy, which causes the learning machine to collapse to a qualitatively equivalent system of the system behind the time series. Thus, the learning machine opens up a novel way to probe the global dynamical properties of a black-box system without artificially establish the equations of motion. The given illustrating examples include a representative model of low-dimensional nonlinear dynamical systems and a spatiotemporal model of reaction-diffusion systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源