论文标题

关于Artin对对角线形式的猜想

On Artin's conjecture for pairs of diagonal forms

论文作者

Vargas, João Campos

论文摘要

令$ p $为奇数,$ d = p^τ(p-1)$。本着Aritn的猜想的精神,请考虑\ S $变量中两种对角度的$ d $的系统系统,由\ begin {equation*} \ begin {split} a_1x_1^d + \ cdots + a_sx_s + a_sx_s + a_sx_s^d = 0 \ end {equation*}带有$ a_i,b_i \ in \ mathbb {q} _p $。对于$ s> 2 \ frac {p} {p-1} d^2-2d $,本文表明,对于每个$τ\ ge 3,p \ ge 7 $,对于每个$τ\ ge 7 $,并且每个$τ= 2,p \ ge 7 $,以及每个$τ= 2,p \ ge \ ge \ ge \ ge \ frac {c} {c} {2}+4 $ c \ pe c。此外,对于$ s>(2 \ frac {p} {p-1} + \ frac {c-3} {2p-2})d^2-2d $,此系统将具有每个$ p $ -Adic-adic解决方案的每个$τ= 1,p \ ge 5 $。

Let $p$ be an odd prime and $d = p^τ(p-1)$. In the spirit of Aritn's conjecture, consider the system of two diagonal forms of degree $d$ in $s$ variables given by \begin{equation*}\begin{split} a_1x_1^d + \cdots + a_sx_s^d = 0\\ b_1x_1^d + \cdots + b_sx_s^d = 0 \end{split} \end{equation*} with $a_i, b_i \in \mathbb{Q}_p$. For $s > 2 \frac{p}{p-1}d^2 - 2d$, this paper shows that this system has a non-trivial $p$-adic solution for every $τ\ge 3, p \ge 7$, and for every $τ= 2, p \ge \frac{C}{2}+4$, where $C \le 9996$. Moreover, for $s > (2\frac{p}{p-1} + \frac{C-3}{2p-2})d^2 - 2d$, this system will have a non-trivial $p$-adic solution for every $τ= 1, p \ge 5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源