论文标题
地下反射器的实验测试是对Anita异常事件的解释
Experimental tests of sub-surface reflectors as an explanation for the ANITA anomalous events
论文作者
论文摘要
气球传播的Anita实验旨在通过冰淋浴产生的无线电排放来检测超高的能量中微子。尽管最初是针对南极冰盖内部的相互作用的,但安妮塔(Anita)也证明了从地球大气中相互作用的超高能带电宇宙射线引起无线电排放的能力。对于在南极冰盖上方产生的阵雨,在南极表面的下降无线电信号的反射应导致极性反转,然后在随后在$ \ sim $ \ sim $ 35-40 km海拔Anita gondola上进行观察。安妮塔(Anita)发表了两个异常实例,即即将进行的宇宙射线,其剩余样本$ \ sim $ 50 UHECR信号与剩下的极性相反。如果这些事件是由于In-Ice中微子相互作用引起的,则陡峭的观察到向上的入射角(相对于水平水平的25--30度)需要非标准模型,因为标准模型横截面否则会禁止中微子穿透长期所需的地球。 Shoemaker等。认为冰科作用可能解释了陡峭的观察到的异常事件。我们在这里考虑Shoemaker等人提供的场景。并发现它们被现存的ANITA和HICAL实验数据所不利。我们注意到,最近关于$>3σ$的额外四个近水压异常的Anita-4事件的报告与它们的模型不兼容,这需要大量的信号传输到冰中。
The balloon-borne ANITA experiment is designed to detect ultra-high energy neutrinos via radio emissions produced by an in-ice shower. Although initially purposed for interactions within the Antarctic ice sheet, ANITA also demonstrated the ability to self-trigger on radio emissions from ultra-high energy charged cosmic rays interacting in the Earth's atmosphere. For showers produced above the Antarctic ice sheet, reflection of the down-coming radio signals at the Antarctic surface should result in a polarity inversion prior to subsequent observation at the $\sim$35-40 km altitude ANITA gondola. ANITA has published two anomalous instances of upcoming cosmic-rays with measured polarity opposite the remaining sample of $\sim$50 UHECR signals. The steep observed upwards incidence angles (25--30 degrees relative to the horizontal) require non-Standard Model physics if these events are due to in-ice neutrino interactions, as the Standard Model cross-section would otherwise prohibit neutrinos from penetrating the long required chord of Earth. Shoemaker et al. posit that glaciological effects may explain the steep observed anomalous events. We herein consider the scenarios offered by Shoemaker et al. and find them to be disfavored by extant ANITA and HiCal experimental data. We note that the recent report of four additional near-horizon anomalous ANITA-4 events, at $>3σ$ significance, are incompatible with their model, which requires significant signal transmission into the ice.