论文标题

在微动物下3D离子晶体中的高保真纠缠闸门

High Fidelity Entangling Gates in a 3D Ion Crystal under Micromotion

论文作者

Wu, Y. -K., Liu, Z. -D., Zhao, W. -D., Duan, L. -M.

论文摘要

离子陷阱是量子计算最有前途的候选者之一。当前的方案主要集中于保罗陷阱中约一百个离子的线性链。为了进一步扩大量子数,一个可能的方向是使用2D或3D离子晶体(Wigner Crystals)。在这些系统中,由于强大的快速振荡电场,离子通常会受到较大的微功能,这可能会显着影响纠缠大门的性能。在这项工作中,我们开发了一种有效的数值方法来设计一般的3D离子晶体中的高保真纠缠门。我们提出数值算法来求解离子的平衡构型及其集体正常模式。然后,我们给出微动功率的数学描述,并将其概括为线性离子链的栅极方案中的一般3D晶体。高度振荡函数的相关时间积分扩展到快速分配的系列,以进行准确有效的评估和优化。作为一个数字示例,我们显示了100-ion晶体中两个离子之间的高保真纠缠栅极设计,理论上的保真度为99.9 \%。

Ion trap is one of the most promising candidates for quantum computing. Current schemes mainly focus on a linear chain of up to about one hundred ions in a Paul trap. To further scale up the qubit number, one possible direction is to use 2D or 3D ion crystals (Wigner crystals). In these systems, ions are generally subjected to large micromotion due to the strong fast-oscillating electric field, which can significantly influence the performance of entangling gates. In this work, we develop an efficient numerical method to design high-fidelity entangling gates in a general 3D ion crystal. We present numerical algorithms to solve the equilibrium configuration of the ions and their collective normal modes. We then give a mathematical description of the micromotion and use it to generalize the gate scheme for linear ion chains into a general 3D crystal. The involved time integral of highly oscillatory functions is expanded into a fast-converging series for accurate and efficient evaluation and optimization. As a numerical example, we show a high-fidelity entangling gate design between two ions in a 100-ion crystal, with a theoretical fidelity of 99.9\%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源