论文标题
颅内脑电图的深度学习分析以识别药物作用和作用机制
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
论文作者
论文摘要
药物目标相互作用(DTI)预测已成为药物重新定位,多种药理,药物发现以及耐药性和副作用预测的基础任务。使用机器学习的DTI识别在这些研究领域越来越受欢迎。多年来,已经提出了许多深度学习方法用于DTI预测。然而,预测准确性和效率仍然是主要挑战。药物 - 电子脑训练图(Pharmaco-EEG)被认为在中枢神经系统活性药物的发展中很有价值。定量脑电图分析表明,在研究药物对大脑的影响方面的可靠性很高。早期的临床前药物EEG研究表明,可以根据其对神经活动的作用机理进行分类的不同类型的药物。在这里,我们提出了一个用于EEG介导的DTI预测的卷积神经网络。这种新方法可以解释复杂的药物作用的基础机制,因为它允许在精神药物的作用机理和作用机理中识别相似之处。
Drug-target interaction (DTI) prediction has become a foundational task in drug repositioning, polypharmacology, drug discovery, as well as drug resistance and side-effect prediction. DTI identification using machine learning is gaining popularity in these research areas. Through the years, numerous deep learning methods have been proposed for DTI prediction. Nevertheless, prediction accuracy and efficiency remain key challenges. Pharmaco-electroencephalogram (pharmaco-EEG) is considered valuable in the development of central nervous system-active drugs. Quantitative EEG analysis demonstrates high reliability in studying the effects of drugs on the brain. Earlier preclinical pharmaco-EEG studies showed that different types of drugs can be classified according to their mechanism of action on neural activity. Here, we propose a convolutional neural network for EEG-mediated DTI prediction. This new approach can explain the mechanisms underlying complicated drug actions, as it allows the identification of similarities in the mechanisms of action and effects of psychotropic drugs.