论文标题

在Turán的数字上,$ 4 $ - 图

On Turán numbers of the complete $4$-graphs

论文作者

Sidorenko, Alexander

论文摘要

Turán数字$ t(n,α+1,r)$是$ n $ vertex $ r $ r $ graph的最小边数,其独立数不超过$α$。对于每个$ r \ geq 2 $,都存在$ t _*(r)$,这样$ t(n,α+1,r)= t _*(r)\:n^r \:α^{1-r} \:(1+o(1+o(1+o(1)$)as $α / r \ to $α / r \ to to \ to to \ to to \ n / r \ to \ in / r \ to \ n / r n / n / / n / n / / n / /α\ f infty。众所周知,$ t _*(2)= 1/2 $,$ t _*(3)$的猜想值为$ 2/3 $。我们证明$ t _*(4)<0.706335 \:$。

The Turán number $T(n,α+1,r)$ is the minimum number of edges in an $n$-vertex $r$-graph whose independence number does not exceed $α$. For each $r\geq 2$, there exists $t_*(r)$ such that $T(n,α+1,r) = t_*(r) \: n^r \: α^{1-r} \: (1+o(1))$ as $α/ r \to\infty$ and $n / α\to\infty$. It is known that $t_*(2) = 1/2$, and the conjectured value of $t_*(3)$ is $2/3$. We prove that $t_*(4) < 0.706335\:$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源