论文标题

Luzin-Novikov定理中的图形的Borel类中没有绑定

There is no bound on Borel classes of the graphs in the Luzin-Novikov theorem

论文作者

Holicky, P., Zeleny, M.

论文摘要

我们表明,对于[1,ω_1)$中的每个序列$α\ $ n ose os oble集$ f \ subset 2^ω\ timesω^ω$ $,使得每个$ x \ in 2^ω$ in 2^ω$ in office $ \ \ {y \ inω^ω; (x,y)\ in f \} $是两点集,$ f $不能被数量涵盖,许多图$ b(n)\ subset 2^ω\ timesω\ timesω^ω$ in 2^ω$的变量$ x \ in 2^ω$的函数的函数,每个$ x $ in 2^ω$,因此每个$ b(n)$都在附加的borel class $ $ \ boldsymbol \ boldsymbol c $ neaddive b(n)中。这排除了具有luzin-novikov定理的定量版本的可能性。构造是对哈灵顿的方法的修改,后者发明了它,以表明存在$π^0_1 $设置为$ω^ω$,其中包含一个非Arithmetic Singleton。通过另一个相同方法的应用程序,我们将封闭设置不包括Borel Set上的Saint Raymond Theorem的定量版本,其中包含$σ$ -COMPACT部分。

We show that for every ordinal $α\in [1, ω_1)$ there is a closed set $F \subset 2^ω\times ω^ω$ such that for every $x \in 2^ω$ the section $\{y\in ω^ω; (x,y) \in F\}$ is a two-point set and $F$ cannot be covered by countably many graphs $B(n) \subset 2^ω\times ω^ω$ of functions of the variable $x \in 2^ω$ such that each $B(n)$ is in the additive Borel class $\boldsymbol Σ^0_α$. This rules out the possibility to have a quantitative version of the Luzin-Novikov theorem. The construction is a modification of the method of Harrington who invented it to show that there exists a countable $Π^0_1$ set in $ω^ω$ containing a non-arithmetic singleton. By another application of the same method we get closed sets excluding a quantitative version of the Saint Raymond theorem on Borel sets with $σ$-compact sections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源