论文标题

挤压梳子状态

Squeezed comb states

论文作者

Shukla, Namrata, Nimmrichter, Stefan, Sanders, Barry C.

论文摘要

连续变量代码是用于量子信息处理和涉及光网络的量子通信的权宜解决方案。在这里,我们表征了挤压梳子,这是在线上挤压相干状态的有限叠加,其属性是逻辑量子的连续变量编码选择。挤压梳子是Gottesman,Kitaev和Preskill提出的理想代码的现实近似。 Rev. A 64,012310(2001)],它受到了由连续可变系统中量子噪声类型引起的错误的完全保护:阻尼和扩散。对于有限挤压梳子的代码空间不再是这种情况,噪声稳健性取决于编码参数。我们分析有限的挤压梳状状态在相空间中,突出了它们复杂的干扰特征,并在暴露于振幅阻尼和高斯扩散噪声过程时表征了动态。我们发现,挤压梳状状态在暴露于阻尼时更合适,容易出错,这反对采用线性扩增的标准误差校正策略,以将阻尼转换为易于描述的各向同性扩散噪声。

Continuous-variable codes are an expedient solution for quantum information processing and quantum communication involving optical networks. Here we characterize the squeezed comb, a finite superposition of equidistant squeezed coherent states on a line, and its properties as a continuous-variable encoding choice for a logical qubit. The squeezed comb is a realistic approximation to the ideal code proposed by Gottesman, Kitaev, and Preskill [Phys. Rev. A 64, 012310 (2001)], which is fully protected against errors caused by the paradigmatic types of quantum noise in continuous-variable systems: damping and diffusion. This is no longer the case for the code space of finite squeezed combs, and noise robustness depends crucially on the encoding parameters. We analyze finite squeezed comb states in phase space, highlighting their complicated interference features and characterizing their dynamics when exposed to amplitude damping and Gaussian diffusion noise processes. We find that squeezed comb state are more suitable and less error-prone when exposed to damping, which speaks against standard error correction strategies that employ linear amplification to convert damping into easier-to-describe isotropic diffusion noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源